Date

Roll No

GURU NANAK MATHS ACADEMY

		M.G. ROAD N	EAR HDFC BANK SAFIDON-1261	12, 9729630333			
PT -	- II	$Class - 10^{th}$			Time: 60 min.		
Sub.	– Maths				M.M 40		
All c	questions are compulso	ory:-					
1.	The decimal expansion of $\frac{22}{7}$ is						
	(a) Terminating	(b) Non-terminating and repeating	(c) Non-terminating and Non-repeating	(d) None of the above			
2.	Which of the following	g is not irrational?					
	(a) (3 + √7)	(b) (3 − √7)	(c) (3 + √7) (3 − √7)	(d) 3√7			
3.	The addition of a ratio	nal number and an irrational numbe	er is equal to:				
	(a) rational number	(b) Irrational number	(c) Both	(d) None of the above			
4. The multiplication of two irrational numbers is:							
	(a) irrational number	(b) rational number	(c) Maybe rational or irrational	(d) None			
5. The largest number that divides 70 and 125, which leaves the remainders 5 and 8, is:							
	(a) 65	(b) 15	(c) 13	(d) 25			
6.	The decimal expansion of the rational number $\frac{23}{2^75^3}$ will terminate after						
	(a) two decimal place	(b) three decimal places	(c) five decimal places	(d) seven decimal places			
7.	If the HCF of 65 and 1	If the HCF of 65 and 117 is expressible in the form 65m – 117, then the value of m is					
	(a) 4	(b) 2	(c) 1	(d) 3			
8.	The prime factorization of 96 is						
	(a) 2 ⁶ × 3	(b) 2 ⁶	(c) 2 ⁴ × 3	(d) 2 ⁵ × 3			
9. If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is							
	(a) 10	(b) -10	(c) 5	(d) -5			

10.	If one of the zeroes of the quadratic polynomial $(k - 1) x^2 + kx + 1$ is – 3, then the value of k is						
	a) $\frac{4}{3}$	(b) $-\frac{4}{3}$	(c) $\frac{2}{3}$	(d) $-\frac{2}{3}$			
11.	A quadratic polynomial, whose zeroes are -3 and 4, is						
	(a) $x^2 - x + 12$	(b) $x^2 + x + 12$	(c) $x^2 - x - 12$	(d) $2x^2 + 2x - 24$			
12.	If the zeroes of the quadratic polynomial $x^2 + (a + 1) x + b$ are 2 and -3 , then						
	(a) a = -7, b = -1	(b) a = 5, b = -1	(c) a = 2, b = -6	(d) a − 0, b = -6			
13.	The zeroes of the quadratic polynomial x^2 + 99x + 127 are						
	(a) both positive	(b) both negative	(c) one positive and one negative	(d) both equal			
14.	The zeroes of the quadratic polynomial $x^2 + kx + k$, $k \neq 0$,						
	(a) cannot both be pos	itive (b) cannot both be negative	(c) are always unequal	(d) are always equal			
15.	If the zeroes of the quadratic polynomial $ax^2 + bx + c$, $c \neq 0$ are equal, then						
	(a) c and a have oppo	site signs	(b) c and b have opposite signs				
	(c) c and a have the same sign (d) c and b have the same sign						
16.	If one of the zeroes of a quadratic polynomial of the form x ² + ax + b is the negative of the other, then it						
	(a) has no linear term a	and the constant term is negative.	(b) has no linear term and the constant t	erm is positive.			
	(c) can have a linear term but the constant term is negative. (d) can have a linear term but the constant term is positive.						
17.	The number of polynomials having zeroes as 4 and 7 is						
	(a) 2	(b) 3	(c) 4	(d) more than 4			
18.	A quadratic polynomial, whose zeroes are -4 and -5, is						
	(a) x ² -9x + 20	(b) x ² + 9x + 20	(c) x ² -9x- 20	(d) x ² + 9x- 20			
19.	The zeroes of the quadratic polynomial x ² + 1750x + 175000 are						
	(a) both negative	(b) one positive and one negative	(c) both positive	(d) both equal			
20.	The zeroes of the quadratic polynomial x ² – 15x + 50 are						
	(a) both negative	(b) one positive and one negative	(c) both positive	(d) both equal			
21.	The zeroes of the quadratic polynomial 3x ² – 48 are						
	(a) both negative	(b) one positive and one negative	(c) both positive	(d) both equal			
22.	The zeroes of the quadratic polynomial x ² – 18x + 81 are						
	(a) both negative	(b) one positive and one negative	(c) both positive and unequal	(d) both equal and positive			
23.	The zeroes of the quadratic polynomial $x^2 + px + p$, $p \neq 0$ are						
	(a) both equal	(b) both cannot be positive	(c) both unequal	(d) both cannot be negative			
24.	If the zeroes of the quadratic polynomial $Ax^2 + Bx + C$, C # 0 are equal, then						
	(a) A and B have the same sign (b) A and C have the same sign						
	(c) B and C have the same sign (d) A and C have opposite signs						
25.	What is the number of zeroes that a linear poly-nomial has/have:						
	(a) 0	(b) 1	(c) 2	(d) 3			
26.	What is the number(s) of zeroes that a quadratic polynomial has/have:						
	(a) 0	(b) 1	(c) 2	(d) 3			

- 27. If one zero of the quadratic polynomial $x^2 + 3x + b$ is 2, then the value of b is (a) 10 (b) -8 (c) 9
- 28. If 1 is one of the zeroes of the polynomial $x^2 + x + k$, then the value of k is:

(d) -10

29. A pair of linear equations $a_1x + b_1y + c_1 = 0$; $a_2x + b_2y + c_2 = 0$ is said to be inconsistent, if

(a)
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

(b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
(c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$
(d) $\frac{a_1}{a_2} \neq \frac{c_1}{c_2}$

- **30.** Graphically, the pair of equations 7x y = 5; 21x 3y = 10 represents two lines which are
 - (a) intersecting at one point
 - (b) parallel

(a) 2

- (c) intersecting at two points
- (d) coincident
- 31. The pair of equations 3x 5y = 7 and -6x + 10y = 7 have
 - (a) a unique solution
 - (b) infinitely many solutions
 - (c) no solution
 - (d) two solutions
- 32. If a pair of linear equations is consistent, then the lines will be
 - (a) always coincident
 - (b) parallel
 - (c) always intersecting
 - (d) intersecting or coincident
- **33.** The pair of equations x = 0 and x = 5 has
 - (a) no solution
 - (b) unique/one solution
 - (c) two solutions
 - (d) infinitely many solutions
- 34. The pair of equation x = -4 and y = -5 graphically represents lines which are
 - (a) intersecting at (-5, -4)
 - (b) intersecting at (-4, -5)

(c) intersecting at (5, 4)

(d) intersecting at (4, 5)

35. If the lines given by 2x + ky = 1 and 3x - 5y = 7 are parallel, then the value of k is

(a)
$$\frac{-10}{3}$$
 (b) $\frac{10}{3}$
(c) - 13 (d) - 7

- **36.** One equation of a pair of dependent linear equations is 2x + 5y = 3. The second equation will be
 - (a) 2x + 5y = 6(b) 3x + 5y = 3
 - (c) -10x 25y + 15 = 0
 - (d) 10x + 25y = 15

37. If x = a, y = b is the solution of the equations x + y = 5 and 2x - 3y = 4, then the values of a and b are respectively

- (a) 6, -1
- (b) 2, 3
- (c) 1, 4
- (d) 19/5, 6/5
- **38.** The graph of x = -2 is a line parallel to the
 - (a) x-axis
 - (b) y-axis
 - (c) both x- and y-axis
 - (d) none of these
- **39.** The graph of y = 4x is a line
 - (a) parallel to x-axis
 - (b) parallel to y-axis
 - (c) perpendicular to y-axis
 - (d) passing through the origin
- **40.** The graph of y = 5 is a line parallel to the
 - (a) x-axis
 - (b) y-axis
 - (c) both axis
 - (d) none of these